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Abstract Let X be a real linear space, X0 ⊂ X a convex set, Y and Z topological real linear
spaces. The constrained optimization problem minC f (x), g(x) ∈ −K is considered, where
f : X0 → Y and g : X0 → Z are given (nonsmooth) functions, and C ⊂ Y and K ⊂ Z
are closed convex cones. The weakly efficient solutions (w-minimizers) of this problem
are investigated. When g obeys quasiconvex properties, first-order necessary and first-order
sufficient optimality conditions in terms of Dini directional derivatives are obtained. In the
special case of problems with pseudoconvex data it is shown that these conditions character-
ize the global w-minimizers and generalize known results from convex vector programming.
The obtained results are applied to the special case of problems with finite dimensional image
spaces and ordering cones the positive orthants, in particular to scalar problems with quasi-
convex constraints. It is shown, that the quasiconvexity of the constraints allows to formulate
the optimality conditions using the more simple single valued Dini derivatives instead of the
set valued ones.

Keywords Vector optimization · Nonsmooth optimization · Quasiconvex vector
functions · Pseudoconvex vector functions · Dini derivatives · Quasiconvex programming ·
Kuhn-Tucker conditions

Mathematics Subject Classifications 2000 90C46 · 90C26 · 26B25 · 49J52

1 Introduction

In this paper X is a linear space, X0 ⊂ X is a convex set, and Y and Z are topological linear
spaces (tls). We deal only with real spaces. We consider the constrained vector optimization
problems
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minC f (x), g(x) ∈ −K , (1)

where f : X0 → Y and g : X0 → Z are given functions, and C ⊂ Y and K ⊂ Z are
closed convex cones. Confining to problems for which g obeys quasiconvex properties, and
dealing with weakly efficient solutions (w-minimizers), we obtain first-order necessary and
first-order sufficient optimality conditions in terms of Dini directional derivatives. Optimality
conditions in terms of Dini set valued directional derivatives for problems with locally Lips-
chitz data have been investigated in [13]. Since here we deal in general with non-Lipschitz
problems, to adopt a similar approach we introduce infinite elements in the image spaces.
We show that the quasiconvexity of the constraints allows in important cases to substitute
the set valued Dini derivative with the more simple single valued lower Dini derivative. A
special care is paid for problems with pseudoconvex data. For such problems we obtain a
characterization of the global w-minimizers and recognize that the obtained results generalize
known ones for problems with convex data. Let us underline that similar generalizations to
smooth scalar problems with quasiconvex constraints have given the origin of quasiconvex
programming, see e. g. [2], [18] or [19]. This has given us an inspiration for the present
study. Within this framework it can be considered as an attempt to generalize some basic
results of quasiconvex programming from scalar to vector problems on one hand and from
smooth to nonsmooth problems on the other hand. Concrete classical results, for instance
ones in [2–4,15] show some similarities with the results of the present paper. A detailed
comparison demands further considerations accounting also the different approaches. The
main difference is that the present study is based on directional derivatives. In consequence
the multipliers in the Lagrangian are directionally dependent. We find this approach more
sensitive to treat nonsmooth and vector problems (recall that even smooth vector problems
obey nonsmooth scalarization [14], in this sense we claim that all vector problems show
nonsmooth behaviour). Example 8.4 gives a support to such a sentence. For the given there
problem with quasiconvex data the sufficient conditions with directionally dependent multi-
pliers work, while similar conditions with directionally independent multipliers fail. Another
feature of the paper is the usage of extensions with infinite elements of the image spaces
introduced in Sect. 3 and different than the one or two points extensions used sometimes in
vector optimization, say in [1,7,11,12]. We find that often such extensions could be more
convenient in vector optimization than these with one or two points.

2 Concepts of optimality

Let x0 ∈ X0. We put X0(x0) = {u ∈ X | x0 + tu ∈ X0 for some t > 0}. The elements of
X0(x0) are called admissible directions for X0 at x0.

The point x0 is said feasible for problem (1) if g(x0) ∈ −K . In the sequel we use the
following concepts of optimality.

Definition 2.1 We say that x0 is a radial w-minimizer of problem (1) if x0 ∈ X0, x0 is a
feasible point, and for any u ∈ X0(x0) there exists δ(u) > 0 such that f (x0 + tu)− f (x0) /∈
−int C whenever 0 < t < δ(u), x0 + tu ∈ X0 and x0 + tu is feasible.

Definition 2.2 We say that x0 is a global w-minimizer of problem (1) if x0 ∈ X0, x0 is a
feasible point and f (x) − f (x0) /∈ −int C for all feasible points x ∈ X0.

Definition 2.3 The global w-minimizer x0 is called strict if f (x) − f (x0) /∈ −C for all
feasible points x ∈ X0\{x0}.
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Dealing with problems with scalar objective function, that is when Y = R and C = R+,
we use to say just minimizers instead of w-minimizers.

Obviously, each strict global w-minimizer is a global w-minimizer, and each global
w-minimizer is a radial w-minimizer.

The well known definition of a local w-minimizers (weakly efficient point) applies for the
case when X is a tls. The feasible point x0 ∈ X0 is said a local w-minimizers of problem (1)
if there is a neighbourhood U of x0 such that f (x) − f (x0) /∈ −int C for all feasible points
x ∈ X0 ∩U . Obviously, then each global w-minimizer is a local w-minimizer, and each local
w-minimizer is a radial w-minimizer. Due to this observations, the necessary conditions for a
radial w-minimizer are also necessary conditions for a local w-minimizer, and the sufficient
conditions for a global w-minimizer are also sufficient conditions for a local w-minimizer.
Since only optimality conditions of these types are considered in the sequel, the eventual
discussion on local w-minimizers is omitted. We find the notion of a radial w-minimizer
convenient when treating optimization problems through directional derivatives. Besides,
we gain the advantage to consider problems in which a topological structure of the linear
space X is not assumed.

When int C = ∅ then straightforward from the definitions each feasible point x0 ∈ X0

is a radial w-minimizer and a global w-minimizer. Therefore the interesting case is when C
has a nonempty interior.

In Definition 2.1 the notion of a radial minimizer is introduced. Generally, we say that
certain radial property holds at a point x0 if the property is satisfied along the rays starting
at x0. Besides the radial minimisers, we will use also the notion of radial continuity. Let T
be a tls. We say that the function φ : X0 → T is radially continuous at x0 ∈ X0 if for any
u ∈ X0(x0) the function t → φ(x0 + tu), t ≥ 0 (such that x0 + tu ∈ X0), is continuous at
t0 = 0. The function φ is said radially continuous if it is radially continuous at any x0 ∈ X0.

3 Extension of linear spaces with infinite elements

Let T be a linear space. We can extend T with infinite elements. To any v ∈ T \{0} we
juxtapose the infinite element v∞, and accept that v1∞ = v2∞ if and only if v2 = λv1 for some
λ > 0. Denote by T∞ the set of the infinite elements, then we will consider the extension
T = T ∪ T∞.

When T is a tls, then a topology in T can be introduced in terms of local bases of neigh-
bourhoods. If v ∈ T and B(v) is a local base of neighbourhoods of v in T , we accept
that B(v) is also a local base of neighbourhoods in T . If v∞ is the infinite element cor-
responding to v ∈ T \{0}, then the family B(v∞) = {(t + W ) ∪ W∞}, where W ⊂ T
is an arbitrary open convex cone such that v ∈ W and t is an arbitrary point in T , con-
stitutes a local base of neighbourhoods of v∞. Saying that W is an open cone we mean
that W is an open set in T such that λW ⊂ W for all λ > 0. For a cone W we write
W∞ = {w∞ | w ∈ W\{0}}. Further we use also the notation W = W ∪ W∞. To prove
that the intersection of two sets in B(v∞) contains an element of B(v∞) one should observe,
that when t1, t2 ∈ T and W1, W2 are open convex cones containing v, then there exists
λ0 > 0, such that λ0v + W1 ∩ W2 ⊂ ti + W1 ∩ W2, i = 1, 2. Indeed, take λ0 > 0
such that v − ti/λ0 ∈ W1 ∩ W2. Now λ0v ∈ ti + λ0W1 ∩ W2 = ti + W1 ∩ W2 and
λ0v + W1 ∩ W2 ⊂ ti + W1 ∩ W2 + W1 ∩ W2 = ti + W1 ∩ W2.

Theorem 3.1 If T is finite dimensional, then the extension T is compact.

Proof We consider T with its Euclidean metrics. Take an open covering Ḡ = G ∪ G∞ of
T with sets from the described above local bases, where G consist of bounded open sets
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and G∞ of sets of the type (t + W ) ∪ W∞ with t ∈ T and W an open convex cone. Since
the family W∞ = {W∞ | (t + W ) ∪ W∞ ∈ G∞ for some t ∈ T } covers T∞, the family
W = {W | W∞ ∈ W∞} covers the unit sphere S = {t ∈ T | ‖t‖ = 1}. Since S is compact,
the set S is covered by a finite subfamily W0 = {W i }k

i=1 ⊂ W . It is clear, that the correspond-

ing finite family G0∞ = {(t i + W i ) ∪ W i∞}k
i=1 covers T∞. The set T 0 = T \⋃k

i=1(t
i + W i )

is compact. The closedness of T 0 is evident. The boundedness of T 0 is shown by the fol-
lowing reasoning. Take δ0 = minx∈S max1≤i≤k dist (x, T \W i ) (here dist (·, ·) is the point-
to-set distance). Then δ0 > 0 because the distance function is continuous, S is compact and
max1≤i≤k dist (x, T \W i ) > 0 for x ∈ S, the latter is a consequence of x ∈ W i for at least
one i . Take δ such that 0 < δ < δ0. Let u ∈ S. Consider the cone L = {t ∈ T | ‖t/λ − u‖ ≤
δ for some λ > 0}. Due to the definition of δ, there exists an index i such that L ⊂ W i .
Let λ0 = (1/δ) max1≤ j≤k ‖ti‖. When λ ≥ λ0 we have ‖(u − t i/λ) − u‖ = ‖t i‖/λ ≤ δ.
Therefore u − t i/λ ∈ W i and λu ∈ t i + W i ⊂ T \T 0. This reasoning shows that, when a
point λu ∈ T 0 then λ < λ0, hence T 0 is bounded. Thus, the set T 0 is compact and has an
open covering G. Therefore it can be covered by a finite subfamily G0 of G. In consequence
T is covered by the finite subfamily Ḡ0 = G0 ∪ G0∞ which shows that T is compact. ��

Since T is a topological space, we can apply topological operations in T . In particular the
interior and the closure in T are denoted respectively int and cl. The overline is put to dis-
tinguish from the interior and the closure in T which are denoted respectively int and cl.
Since T ⊂ T , the topological operation in T , in particular the operations int and cl, can
be considered also as operations in T . We adopt different notations for the operations in T
and T , since applied to sets in T they give in general different results. For instance, if T is a
locally convex space and W is a closed cone in T we have cl W = W while cl W = W ∪W∞.
We explain the latter equality concentrating on the infinite points. To explain the inclusion
cl W ⊃ W ∪ W∞ (true also when T is arbitrary tls and not necessarily locally convex space)
let v∞ be an infinite point corresponding to the point v ∈ W\{0}. Take a neighbourhood
(t + W 0) ∪ W 0∞ of v∞ where W 0 is a convex open cone containing v. Since W 0 is open
and contains v, we have v − t/λ ∈ W 0 for some λ > 0, whence λv ∈ (t + W 0) ∩ W .
This shows that any neighbourhood of v∞ intersects W , hence v∞ ∈ cl W . To explain the
inclusion cl W ⊂ W ∪ W∞ let v∞ /∈ W∞ be an infinite point corresponding to v ∈ T \{0}.
As a consequence of v∞ /∈ W∞ we have v /∈ W . Since T is locally convex space, there
exists an open convex cone W 0 containing v and not intersecting W . Then W 0 ∪ W 0∞ is a
neighbourhood of v∞ which does not intersect W , hence v∞ /∈ cl W .

The following property plays an important role in the proof of some of the forthcoming
results: If W ⊂ T is a cone, then int W ∩ T = int W (the same is true when W is arbi-
trary set in T and W = W ∩ T ). Indeed, from the definition of the topology in T , the
finite point v belongs to int W if and only if we have v ⊂ U ⊂ int W for some neighbour-
hood U of v, that is if v ∈ int W . Similarly, when T is locally convex space and W ⊂ T
is a cone, we have int W = int W ∪ (int W )∞. To get the proof it remains to consider
the infinite points. Let v∞ ∈ int W is an infinite point corresponding to v ∈ T \{0}. Then
there exists an open convex cone W 0 such that v ∈ W 0 and for some t ∈ T we have
W 0∞ = ((t + W 0) ∪ W 0∞) ∩ T∞ ⊂ W∞. This implies W 0 ⊂ W and with regard to W 0 open
it holds v ∈ int W , consequently v∞ ∈ (int W )∞ and int W ⊂ int W ∪ (int W )∞ (true for
arbitrary tls T ). To prove the converse inclusion, take the infinite point v∞ ∈ (int W )∞ cor-
responding to v ∈ int W . Then there exists an open convex cone W 0 (here the local convexity
of T is used) such that v∞ ∈ W 0∞ ⊂ int W .
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When T = R we have T = R = R∪{−∞}∪ {+∞}. Attention, for the integer k > 1 one

should not mix Rk (the extension of R
k with infinite points) and R

k
(the Cartesian product

R × · · · × R of k copies of R). It holds R
k ⊂ Rk and R

k ⊂ R
k = (R)k but neither of the sets

Rk and R
k

is contained in the other one. In the sequel, if T1 and T2 are tls, and A ⊂ T 1 and
B ⊂ T 2, we understand the interior int A × B = int A × int B as interior in the product
space T 1 × T 2 (and not in T1 × T2, turn attention that A × B need not be contained in
T1 × T2).

Let T be a tls and φ : X0 → T a given function. Take x ∈ X0 and u ∈ X0(x). The
Kuratowski limit Liminf t→0+ 1

t (φ(x + tu) − φ(x)) when considered in T is denoted by

φ
(1)
− (x, u), and when considered in T by φ

[1 ]
− (x, u). In both cases we use to say that this limit

is the (set valued) Dini derivative of φ at x in direction u. Pay attention, that due to Theorem
3.1 when T is finite dimensional it holds φ

[1 ]
− (x, u) �= ∅.

For a scalar function φ : X0 → R we will apply also the single valued lower Dini
derivative defined as φ′−(x, u) = lim inf t→0+ 1

t (φ(x + tu) − φ(x)), whose values are

in R. The equality φ′−(x, u) = inf φ
[1 ]
− (x, u) (the infimum taken in R) relates the single valued

and the set valued Dini derivatives. For a vector function φ = (φ1, . . . , φk) : X0 → R
k we

define the single valued lower Dini derivative by φ′−(x, u) = (φ1
′−(x, u), . . . , φk

′−(x, u)) ∈
R

k
.
The extension R of the real number set R with the infinite points ±∞ is widely used in

convex and in nonsmooth scalar optimization, and to some extend in vector optimization. The
proposed here extension is applied in [9] to study vector variational inequalities. Theorem 3.1
appears there but without a rigorous proof, so this gap is fulfilled here. A different approach
is given in [12] where a two-point extension with infinite points of a linear space T partially
ordered by a cone W is proposed. Recently Durea [11] uses the same two-point extensions
studying Lagrange claims for set valued optimization. His motivation is to cover in a unified
theory both cases of a set valued optimization and of real extended functions. The two point
extension is T W = T ∪{−∞W }∪{+∞W } and when W is a convex cone with nonempty inte-
rior can be represented through the defined here extension T by T W = T ∪ {−w∞} ∪ {w∞}
where w ∈ int W . This point of view allows using the heritage topology to introduce straight-
forward a topology in T W (though a direct definition is simple enough). Similarly, possibly
defined in advance algebraic and cone-ordered structures in T (we do not follow this line
here, for this exceeds the aim of the paper) can be inherited by T W . Let us underline, that
in vector optimization one or two-point extensions with infinite elements of cone-ordered
linear spaces use also other authors, see e. g. Ref. [7] and [1].

In our opinion, the proposed here extension, though looking more complex, has some
advantage. It does not refer to the ordering cone. Because of this the set valued Dini deriv-
ative φ

[1 ]
− (x, u) can be defined in tls, which need not be ordered by a cone (it is not in the

nature of the concept to associate φ
[1 ]
− (x, u) with an ordering cone). We find the extension T

appropriate for the forthcoming discussion. Finally, it is to some extend similar to the way,
in which in projective geometry infinite elements are defined.

When T is a tls, then T ∗ denotes the dual space of T , and 〈·, ·〉 the dual pairing on T ∗ ×T .
Recall that when T is a normed space, then T ∗ is a Banach space.

When T is a tls, we extend the values of the continuous linear functionals ξ ∈ T ∗ on
the infinite elements in T∞, putting 〈ξ, v∞〉 = +∞ when 〈ξ, v〉 > 0, 〈ξ, v∞〉 = 0 when
〈ξ, v〉 = 0, and 〈ξ, v∞〉 = −∞ when 〈ξ, v〉 < 0 (here v∞ ∈ T∞ is the infinite point
corresponding to the finite one v ∈ T \{0}).
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4 Concepts of quasiconvexity and pseudoconvexity

In this section like in the previous one T denotes a tls, and W a closed convex cone in T . Recall
that the positive polar cone of W is the cone W ′ = {ξ ∈ T ∗ | 〈ξ,w〉 ≥ 0 for all w ∈ W }
and W ′′ = (W ′)′ = {w ∈ T | 〈ξ,w〉 ≥ 0 for all ξ ∈ W ′} is the second polar cone. From
the definition of W ′ we have W ⊂ W ′′, and when T is locally convex due to the Separation
Theorem [21] we have W ′′ = W (W ′′ = cl co W for arbitrary cone W ). Possible use of this
observation is the following: to show that a point x ∈ X0 is feasible for problem (1) it is
enough to show that g(x) ∈ −K ′′ (further this is used e. g. in the proofs of Theorems 5.1
and 5.3).

When w0 ∈ W we put W ′[w0] = {ξ ∈ W ′ | 〈ξ,w0〉 = 0} and W [w0] = (W ′[w0])′ =
{w ∈ T | 〈ξ,w〉 ≥ 0 when ξ ∈ W ′, 〈ξ,w0〉 = 0}. The equality 〈ξ,w0〉 = 0 usually referred
as complementary slackness condition enters into the definition of both W ′[w0] and W [w0].
It can be shown that W [w0] is the tangent cone of W at w0.

Recall that ξ ∈ T ∗ is called an extreme direction for W ′ if ξ ∈ W ′\{0}, and for all
ξ1, ξ2 ∈ W ′, such that ξ = ξ1 + ξ2, it holds ξ1, ξ2 ∈ R+ ξ . The set of the extreme direc-
tions of W ′ is denoted extd W ′. If T is locally convex space and W has a weak∗-compact
base, due to Krein-Milman Theorem [21] we have W = {w ∈ T | 〈ξ,w〉 ≥ 0, ξ ∈ extd W ′}.
Theorem 4.1 Let w0 ∈ W . Then the equality extd W ′[w0] = {ξ ∈ extd W ′ | 〈ξ,w0〉 = 0}
relates the extreme directions of W ′[w0] and W ′.

Proof The crucial moment is to show that if ξ ∈ extd W ′[w0] then ξ ∈ extd W ′ (the oppo-
site inclusion is obvious). Let ξ = ξ1 + ξ2 with ξ i ∈ W ′ (i = 1, 2). Then 0 = 〈ξ,w0〉 =
〈ξ1, w0〉 + 〈ξ2, w0〉. Since 〈ξ i , w0〉 ≥ 0 (i = 1, 2), we get the equalities 〈ξ i , w0〉 = 0
(i = 1, 2). So ξ i ∈ W ′[w0] and since ξ ∈ extd W ′[w0], we get ξ i ∈ R+ξ (i = 1, 2). ��

For the function φ : X0 → T the level set corresponding to t ∈ T is the set levt,W φ =
{x ∈ X0 | φ(x) ∈ t − W }.
Definition 4.1 ([17]) The function φ : X0 → T is said W -quasiconvex if for all t ∈ T the
level set levt,W φ is convex. In other words, the function φ is W -quasiconvex if for all t ∈ T ,
all x1, x2 ∈ X0, x1 �= x2, such that φ(x1) ∈ t − W , φ(x2) ∈ t − W , and all τ ∈ (0, 1), it
holds φ((1 − τ)x2 + τ x1) ∈ t − W .

The next theorem gives a characterization of W -quasiconvex functions when T is a Banach
space and int W �= ∅. Moreover, it characterizes W -quasiconvex functions when W intro-
duces a directed order on T . The latter means that for all t1, t2 ∈ T there exists t ∈ T such
that t − t i ∈ W , i = 1, 2. Observe that if int W �= ∅ then W introduces a directed order on
T . We write cl∗ W ′ for the weak∗ closure of W ′. Let us note, that if int W �= ∅ then W ′ has a
bounded hence weak∗ compact base and by the Krein-Milman Theorem [21] the hypothesis
W ′ = cl∗ co extd W ′ is fulfilled.

Theorem 4.2 (Benoist et al. [5]) Let T be a Banach space. Assume that W introduces a
directed order on T and W ′ = cl∗ co extd W ′. Then φ : X0 → T is W -quasiconvex if and
only if the functions 〈ξ, φ〉 are quasiconvex for all ξ ∈ extd W ′.

The following theorem in the case of a polyhedral cone W ′ extends Theorem 4.2 to locally
convex spaces. It generalizes also the result of Luc [17,Proposition 6.5, p. 30] which concerns
the particular case when T is the Euclidean space R

n and W is generated by exactly n linearly
independent vectors.
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Theorem 4.3 Let T be a locally convex space and let the cone W ′ be polyhedral. Then the
function φ : X0 → T is W -quasiconvex if and only if the functions 〈ξ, φ〉 are quasiconvex
for all ξ ∈ extd W ′.

Proof If W ′ is polyhedral, then it admits a base � = co {ξ1, . . . ξ k} where {ξ1, . . . ξ k} =
� ∩ extd W ′. It is enough to prove that φ is W -quasiconvex if and only if the functions
〈ξ i , φ〉 are quasiconvex for all i = 1, . . . , k. Suppose that the vectors {ξ1, . . . , ξn} are
linearly independent, while ξ j = ∑n

i=1 λ
j
i ξ i for j = n + 1, . . . , k. We put into corre-

spondence of φ the function φ0 : X0 → R
n , φ0(x) = (〈ξ1, φ(x)〉, . . . , 〈ξn, φ(x)〉). Put

ei = (0, . . . , 1, . . . , 0), i = 1, . . . , n (the only unit is on i-th place). Let W 0 ⊂ R
n (with

the Euclidean norm) be the positive polar cone of the convex cone (W 0)′ generated by
the vectors ei , i = 1, . . . , n, and e j = ∑n

i=1 λ
j
i ei , j = n + 1, . . . , k. Then the function

φ is W -quasiconvex if and only if the function φ0 is W 0-quasiconvex. Indeed, let φ0 be
W 0-quasiconvex. Take a point t ∈ T and let t0 = (〈ξ1, t〉, . . . , 〈ξn, t〉) ∈ R

n . From the
W 0-quasiconvexity of φ0 the set Lt = {x ∈ X0 | φ0(x) ∈ t0 − W 0} is convex. An easy
calculation shows that Lt = {x ∈ X0 | φ(x) ∈ t − W }, whence φ is W -quasiconvex. To
verify Lt = {x ∈ X0 | φ(x) ∈ t − W } we observe (applying W = W ′′, true because T is
locally convex space) that x ∈ Lt if and only if it holds both:

〈

eı ,

n∑

i=1

〈ξ i , φ(x) − t〉 ei

〉

= 〈ξ i , φ(x) − t〉 ≤ 0 for ı = 1, . . . , n ;
〈

e j ,

n∑

i=1

〈ξ i , φ(x) − t〉 ei

〉

=
〈

n∑

i=1

λ
j
i ei ,

n∑

i=1

〈ξ i , φ(x) − t〉 ei

〉

=
〈

n∑

i=1

λ
j
i ξ i , φ(x) − t

〉

= 〈ξ j , φ(x) − t〉 ≤ 0 for j = n + 1, . . . , k .

Let now φ be W -quasiconvex. Take t0 ∈ R
n and choose a point t ∈ T to be a solution of

the system of linear equations 〈ξ i , t〉 = t0
i , i = 1, . . . , n. The resolvability of the system is

a consequence of the linear independence of ξ i , i = 1, . . . , n. Since φ is W -quasiconvex,
the set {x ∈ X0 | φ(x) ∈ t − W } is convex. Repeating the above calculations, we see that
{x ∈ X0 | φ(x) ∈ t − W } = {x ∈ X0 | φ0(x) ∈ t0 − W 0}. This shows that φ0 is W 0-
quasiconvex. To complete the proof, it remains only to apply Theorem 4.2 for the function
φ0 : X0 → R

n having an Euclidean (hence Banach) space as image space. ��

The following theorem is in fact a corollary of Theorems 4.2 and 4.3.

Theorem 4.4 Under the hypotheses of Theorems 4.2 or 4.3, if the function φ : X0 → T is
W -quasiconvex and w0 ∈ W , then φ is also W [w0]-quasiconvex.

Proof First of all we prove that the cone W [w0] also satisfies the hypotheses of Theorems
4.2 and 4.3 respectively.

Let, under the hypotheses of Theorems 4.2, W introduce a directed order on T and W ′ =
cl∗ co extd W ′. Let t1, t2 ∈ T and t ∈ T be such that t − t i ∈ W , i = 1, 2. Since
W ⊂ W [w0], we have also t − t i ∈ W [w0], i = 1, 2. Therefore W [w0] introduces a
directed order on T . Within the accepted notations T ′[w0] = {ξ ∈ T ∗ | 〈ξ,w0〉 = 0}. Using
the weak∗ closedness and the convexity of T ′[w0], and applying Theorem 4.1, we get
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W ′[w0] = W ′ ∩ T ′[w0] = cl∗ co extd W ′ ∩ T ′[w0]
= cl∗

(
co extd W ′ ∩ T ′[w0]) = cl∗co

(
extd W ′ ∩ T ′[w0])

= cl∗ co extd W ′[w0].
Let, under the hypotheses of Theorems 4.3, the cone W ′ be polyhedral. Then W ′

possesses a base � with � ∩ extd W ′ being a finite set. Then �(w0) = � ∩ T ′[w0] ⊂ � is a
base of W ′[w0] and according to Theorem 4.1 extd W ′[w0] = extd W ′ ∩ T ′[w0] ⊂ extd W ′.
Therefore the set �(w0)∩ extd W ′[w0] ⊂ � ∩ extd W ′ is finite. Hence, the cone W ′[w0] has
a base containing finite number of extreme directions. Consequently, W ′[w0] is polyhedral.

We prove now the thesis. Since φ is W -convex, according to Theorem 4.2 or 4.3 the
functions 〈ξ, φ〉, ξ ∈ extd W ′, are quasiconvex. From Theorem 4.1 extd W ′[w0] ⊂ extd W ′,
whence the functions 〈ξ, φ〉, ξ ∈ extd W ′[w0], are quasiconvex. Then, according again to
Theorem 4.2 or 4.3 the function φ is W [w0]-quasiconvex. ��

The quasiconvexity of the scalar function φ : X0 → R can be defined also in the following
way. We say that φ is quasiconvex if the inequality φ(x2) ≥ φ(x1), x1 �= x2, and 0 < t < 1
imply φ((1 − t)x2 + t x1) ≤ φ(x2). When in this definition we fix x2 = x0, then we will
say that φ is quasiconvex at x0 (the quasiconvexity at x0 is a “radial notion” because it is a
property which holds along the rays starting at x0). The vector analogue of this definition is
the following.

Definition 4.2 We say that the function φ : X0 → T is W -quasiconvex at x0 ∈ X0, if
φ(x1) − φ(x0) ∈ −W , x1 ∈ X0\{x0}, and t ∈ (0, 1), imply φ((1 − t)x0 + t x1) − φ(x0) ∈
−W .

To characterize the W -quasiconvexity at x0 of a given function φ : X0 → T through
scalar functions we introduce the following definition of jointly quasiconvex at x0 scalar
functions φ j : X0 → R, j ∈ J . Pay attention, that if all the functions φ j , j ∈ J , are
quasiconvex at x0, then they are also jointly quasiconvex.

Definition 4.3 We say that the scalar functions φ j : X0 → R, j ∈ J , are jointly quasiconvex
at x0 ∈ X0, if when for a point x1 ∈ X0\{x0} all the inequalities φ j (x1)−φ j (x0) ≤ 0, j ∈ J ,
are satisfied, and t ∈ (0, 1), then also all the inequalities φ j ((1 − t)x0 + t x1)−φ j (x0) ≤ 0,
j ∈ J , are satisfied.

Theorem 4.5 Let T be a locally convex space. Then the function φ : X0 → T is W -quasi-
convex at x0 ∈ X0 if and only if the functions 〈ξ, φ(x)〉, ξ ∈ W ′, are jointly quasiconvex at
x0. When W ′ has a weak∗ compact base �, then we can confine to the functions 〈ξ, φ(x)〉,
ξ ∈ � ∩ extd W ′.

Proof The thesis is an obvious reformulation of the definition in terms of scalarization. The
hypothesis that T is a locally convex space is assumed to guarantee W = W ′′. When W ′ has
a weak∗ compact base the proof applies the Krein-Milman Theorem. ��

In the sequel pseudoconvexity plays an important role. Recall that the function φ : X0 →
R is said pseudoconvex at x0 ∈ X0, if φ(x0) > φ(x1), x1 ∈ X0, implies φ′−(x0, x1−x0) < 0.
The function φ is said pseudoconvex, if it is pseudoconvex at each x0 ∈ X0. This definition
of pseudoconvexity in terms of Dini derivatives is given by Diewert [10] as a convenient
modification for nonsmooth functions of the classical definition of Mangasarian [19]. We
generalize it to vector functions. Let us mention that when φ is directionally differentiable the
pseudoconvexity from the following Definition 4.4 reduces to the one given by Cambini [6].
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Definition 4.4 We say that φ : X0 → T is W -pseudoconvex at x0 ∈ X0\{x0}, if φ(x1) −
φ(x0) ∈ −int W , x1 ∈ X0, implies φ

[1 ]
− (x0, x1 − x0) ∩ −int W �= ∅. We say that φ is

pseudoconvex, if it is pseudoconvex at each x0 ∈ X0.

Besides the pseudoconvexity, also the strict pseudoconvexity plays an important role in
the sequel. We say that the function φ : X0 → R is strictly pseudoconvex at x0 ∈ X0, if
φ(x0) ≥ φ(x1), x1 ∈ X0\{x0}, implies φ′−(x0, x1 − x0) < 0. We say that φ is strictly
pseudoconvex, if it is strictly pseudoconvex at each point x0 ∈ X0. Here is the vector ana-
logue.

Definition 4.5 We say that φ : X0 → T is strictly W -pseudoconvex at x0 ∈ X0, if φ(x1) −
φ(x0) ∈ −W , x1 ∈ X0\{x0}, implies φ

[1 ]
− (x0, x1 − x0) ∩ −int W �= ∅. We say that φ is

strictly pseudoconvex, if it is strictly pseudoconvex at each x0 ∈ X0.

Let the function φ : X0 → T be W -quasiconvex at x0 ∈ X0. Let x1 ∈ X0\{x0} be such
that φ(x1) − φ(x0) ∈ −W , or equivalently φ(x0 + u) − φ(x0) ∈ −W where u = x1 − x0.
Now φ(x0 + tu) − φ(x0) ∈ −W for 0 < t < 1, whence φ

[1 ]
− (x0, u) ⊂ −W . Hence

φ
[1 ]
− (x0, u) ∩ −W �= ∅ in the case when φ

[1 ]
− (x0, u) �= ∅ (when T is finite dimensional

this has place due to the compactness of T ). The definition of the strict W -pseudoconvex-
ity at x0 strengthens this property to φ

[1 ]
− (x0, u) ∩ −int W �= ∅. Nevertheless a strictly

W -pseudoconvex at x0 function need not be W -quasiconvex at x0.

Example 4.1 Let X = R, X0 = R+, x0 = 0, T = R, W = R+. The function φ : X0 → T ,
φ(x) = x sin(1/x) for x > 0 and φ(0) = 0, is strictly W -pseudoconvex at x0, but not
W -quasiconvex at x0.

The following definition introduces jointly pseudoconvex (jointly strictly pseudoconvex)
at a point functions and resembles Definition 4.3. Theorems 4.6 relates through scalariza-
tion a W -pseudoconvex (strictly W -pseudoconvex) at x0 functions and jointly pseudoconvex
(jointly strictly pseudoconvex) at x0 functions. Let us underline, that when the scalar func-
tions φ j : X0 → R, j ∈ J , are pseudoconvex (strictly pseudoconvex) at x0, they are also
jointly pseudoconvex (jointly strictly pseudoconvex) at x0 as it is seen from the following
example. Let us underline however, that if X and T are finite dimensional (normed) spaces,
W is polyhedral and φ : X0 → T is smooth, then if φ is W -pseudoconvex at x0, it is also
W -quasiconvex at x0 (the smoothness is absent in Example 4.1).

Definition 4.6 We say that the scalar functions φ j : X0 → R, j ∈ J , are jointly pseudo-
convex (jointly strictly pseudoconvex) at x0 ∈ X0, if when for a point x1 ∈ X0\{x0} all the
inequalities φ j (x1) < φ j (x0) (φ j (x1) ≤ φ j (x0)), j ∈ J , are satisfied, then (φi )′−(x0, x1 −
x0) < 0 holds for all j ∈ J .

Theorem 4.6 If the function φ : X0 → T is W -pseudoconvex (strictly W -pseudoconvex) at
x0 ∈ X0, then the functions 〈ξ, φ(x)〉, ξ ∈ W ′\{0}, are jointly pseudoconvex (jointly strictly
pseudoconvex) at x0.

Conversely, let T be locally convex space, and suppose that the functions 〈ξ, φ(x)〉,
ξ ∈ W ′\{0}, are jointly pseudoconvex (jointly strictly pseudoconvex) at x0. Suppose also
that the following property has place: when 〈ξ, φ〉′−(x0, u) < 0 holds for all ξ ∈ W ′\{0}, then

φ
[1 ]
− (x0, u) ∩ −int W �= ∅ (for instance, when φ

[1 ]
− (x0, u) is a singleton for all u ∈ X0(x0)

this property is obviously satisfied). Then φ is pseudoconvex (strictly pseudoconvex) at x0.

123



120 J Glob Optim (2009) 44:111–130

Proof Let the function φ : X0 → T be W -pseudoconvex (strictly W -pseudoconvex) at x0.
Take x1 ∈ X0\{x0} such that 〈ξ, φ(x1)〉 − 〈ξ, φ(x0)〉 < 0 (〈ξ, φ(x1)〉 − 〈ξ, φ(x0)〉 ≤ 0)
for all ξ ∈ W ′\{0}. This implies φ(x1) − φ(x0) ∈ −int W (φ(x1) − φ(x0) ∈ −W ),
whence there exists a point t0 ∈ φ

[1 ]
− (x0, x1 − x0) ∩ −int W . Then for all ξ ∈ W ′ it holds

〈ξ, φ〉′−(x0, x1 − x0) ≤ 〈ξ, t0〉 < 0, whence the functions 〈ξ, φ(x)〉, ξ ∈ W ′\{0}, are jointly
pseudoconvex (strictly pseudoconvex) at x0.

Conversely, let x1 ∈ X0\{x0} be such that φ(x1) − φ(x0) ∈ −int W (φ(x1) − φ(x0) ∈
−W ). Then 〈ξ, φ(x1)〉 − 〈ξ, φ(x0)〉 < 0 (〈ξ, φ(x1)〉 − 〈ξ, φ(x0)〉 ≤ 0) for all ξ ∈ W ′\{0}.
From the joint pseudoconvexity (joint strict pseudoconvexity) we have 〈ξ, φ〉′−(x0, x1 −
x0) < 0, ξ ∈ W ′\{0}. The hypotheses give φ

[1 ]
− (x0, x1 − x0) ∩ −int W �= ∅, which shows

that φ is W -pseudoconvex (strictly W -pseudoconvex). ��

Definition 4.5 generalizes the following notion of convexity.

Definition 4.7 The function φ : X0 → T is said W -convex (strictly W -convex) if for all
x1, x2 ∈ X0, x1 �= x2, and all t ∈ (0, 1) it holds φ((1 − t)x2 + t x1) ∈ (1 − t)φ(x2) +
tφ(x1) − W (φ((1 − t)x2 + t x1) ∈ (1 − t)φ(x2) + tφ(x1) − int W ). When these properties
hold for a fixed x2 = x0, then we say that φ is W -convex (strictly W -convex) at x0.

The following theorem shows that the notion of W -pseudoconvexity (strict W -
pseudoconvexity) can be considered as a generalization of the notion of W -convexity (strict
W -convexity).

Theorem 4.7 Let X and T be normed spaces, T finite dimensional, and φ : X0 → T Lip-
schitz near x0 ∈ X0. If the function φ : X0 → T is W -convex (strictly W -convex) at x0,
then φ is also W -pseudoconvex (strictly W -pseudoconvex) at x0.

Proof Let φ be W -convex at x0. Choose x1 ∈ X0\{x0} such that φ(x1) − φ(x0) ∈ −int W .
Then φ(x1) − φ(x0) ∈ −w0 − W for some w0 ∈ int W . Let tk → 0+. Since T is finite
dimensional, according to Theorem 3.1 the extension T is compact. Passing eventually to
a subsequence we may assume that t0 = limk(1/tk)

(
φ(x0 + tk(x1 − x0)) − φ(x0)

)
. Now

t0 ∈ φ
[1 ]
− (x0, x1 − x0). We will show that t0 ∈ −int W . In fact, the local Lipschitz condition

gives that t0 ∈ T , that is t0 is finite. Hence, we have to show that t0 ∈ −int W . Observe that
when 0 < tk < 1 we have

1

tk

(
φ((1 − tk)x0 + tk x1) − φ(x0)

) ∈ 1

tk

(
(1 − tk)φ(x0) + tkφ(x1) − W − φ(x0)

)

⊂ φ(x1) − φ(x0) − W ⊂ −w0 − W − W ⊂ −w0 − W.

A passing to a limit gives t0 ∈ −w0 − W ⊂ −int W . Therefore φ is pseudoconvex at x0.
Assume now that φ is strictly W -convex at x0. Choose x1 ∈ X0\{x0} such that φ(x1) −

φ(x0) ∈ −W . Put x̄1 = (1/2) (x0 + x1). Then φ(x̄1) − φ(x0) ∈ int W . Proceeding as
above, we get that φ

[1 ]
− (x0, x̄1 − x0) ∩ −int W �= ∅. With regard to φ

[1 ]
− (x0, x̄1 − x0) =

(1/2) φ
[1 ]
− (x0, x1 − x0) we get that also φ

[1 ]
− (x0, x1 − x0) ∩ −int W �= ∅. Therefore φ is

strictly W -pseudoconvex at x0. ��

In connection with the Lipschitz hypothesis in Theorem 4.7, let us recall that when φ

is W -convex, X is finite dimensional, X0 is open, and W is polyhedral, then φ is locally
Lipschitz.
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5 Necessary conditions

In this section we discuss necessary optimality conditions for problem (1) in terms of Dini
directional derivatives.

In the next Theorem 5.1 (and only here) we give a different sense to the Dini derivative
( f, g)

[1 ]
− (x0, u) than that from the accepted definition in Sect. 3 (where ( f, g)

[1 ]
− (x0, u)

means the Dini derivative of the function φ = ( f, g) and whose values are in Y × Z ). We
put ( f, g)

[1 ]
− (x0, u) to be the set of all (y, z) ∈ Y × Z such that for some sequence of reals

tk → 0+ it holds

y = lim
k

1

tk

(
f (x0 + tku) − f (x0)

)
, z = lim

k

1

tk

(
g(x0 + tku) − g(x0)

)
.

A particular case of Theorem 5.1 dealing with locally Lipschitz functions f and g appears in
[13]. Let us underline that the differential quotient of a locally Lipschitz function is bounded
by the Lipschitz constant near the considered point, which makes redundant the use of infinite
elements in the definition of the Dini derivative. Here Theorem 5.1, which represents a result
similar to that of [13], is used rather as an issue point to explain the evolution when we pass
to problems with quasiconvex constraints, which consists in the possibility to replace the
derivative ( f, g)

[1 ]
− (x0, u) with f [1 ]

− (x0, u) × g[1 ]
− (x0, u).

Theorem 5.1 Let Z be a normed space and let K ′ have a compact base �. Consider problem
(1). Let x0 be a radial w-minimizer of (1) and let g be radially continuous at x0. Then for
each u ∈ X0(x0) it holds

( f, g)
[1 ]
− (x0, u) ∩ (−int ( C × K [−g(x0)] )) = ∅ . (2)

Proof Suppose on the contrary, that for some u0∈X0(x0) there exists (ȳ0, z̄0)∈( f, g)
[1 ]
−

(x0, u0) such that ȳ0 ∈ −int C , z̄0 ∈ −int K [−z0]. Let ȳ0 = limk(1/tk)(yk − y0) and
z̄0 = limk(1/tk)(zk−z0) for some sequence tk → 0+, where yk = f (x0+tku0), y0 = f (x0),
zk = g(x0 + tku0), z0 = g(x0).

Now we proof that the points x0 + tku0 are feasible for all sufficiently large k. Let η̄ ∈ �.
We show that there exists a positive integer k(η̄) and a neighbourhood V (η̄) of η̄, such that
〈η, zk〉 < 0 for k > k(η̄) and η ∈ V (η̄). For this purpose we consider the cases:

10. η̄ ∈ K ′[−z0]. Since z̄0 ∈ −int K [−z0], we have (1/tk)(zk − z0) ∈ −int K [−z0]
for all sufficiently large k, whence zk − z0 ∈ −int K [−z0]. Therefore zk − z0 + εB ⊂
−int K [−z0] for some ε > 0 and all sufficiently large k. Here B is the unit ball in Z . This
gives 〈η̄, zk〉 = 〈η̄, zk −z0〉 ≤ −ε‖η̄‖. Let ‖η−η̄‖ < ε ‖η̄‖/ supk ‖zk‖ (pay attention that the
sequence ‖zk‖ is bounded because from the radial continuity of g at x0 we have zk → z0).
Now

〈η, zk〉 = 〈η − η̄, zk〉 + 〈η̄, zk〉 ≤ ‖η − η̄‖ ‖zk‖ − ε‖η̄‖ < 0 .

20. η̄ ∈ K ′\K ′[−z0]. Now 〈η̄, z0〉 < −ε ‖η̄‖ for some ε > 0, whence 〈η̄, zk〉 < −ε ‖η̄‖
for all sufficiently large k. Let ‖η− η̄‖ < ε ‖η̄‖/ supk ‖zk‖. As in case 10 we get 〈η, zk〉 < 0 .

The compactness of � gives � ⊂ V (η̄1) ∪ · · · ∪ V (η̄s) for some η̄1, . . . , η̄s ∈ �. Let
k0 = max(k(η̄1), . . . , k(η̄s)). Take k > k0. Then 〈η, zk〉 < 0 for all η ∈ �, and hence for all
η ∈ K ′\{0}. Therefore zk ∈ −int K ⊂ −K , in other words, the points x0 + tku0 are feasible.

According to the made assumption ȳ0 = limk(1/tk)(yk − y0) ∈ −int C . Therefore
yk − y0 ∈ −int C for all sufficiently large k, a contradiction to the hypothesis that (x0, y0)

is a radial w-minimizer of (1). ��
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If int K �= ∅ then K ′ admits a bounded and hence weak* compact base � [16]. This
observation raises the question whether in Theorem 5.1 the hypothesis that “K ′ possesses
a compact base” can be replaced by “K ′ possesses a weak* compact base”. The following
example gives a negative answer.

Example 5.1 Consider problem (1) with X = R, X0 = R+, Y = R, C = R+, Z = c
being the Banach space of the bounded sequences z = (z1, z2 . . .) supplied with the norm
‖z‖ = supn |zn |, K = c+ = {z ∈ Z | zi ≥ 0 (i = 1, 2, . . .)} (with int K �= ∅), f : X0 → R

defined by f (t) = −t , g : X0 → Z defined by g(t) = −w0 + t e where w0 ∈ Z has
positive components w0

i > 0 (i = 1, 2, . . .) such that limi w0
i = 0 and e = (1, 1, , . . .) has

all components 1, and x0 = 0. We have

Z∗ = 	1 := {η = (η1, η2, . . .) | ‖η‖	1 =
∞∑

i=1

|ηi | < ∞} ,

K ′ = 	1+ = {η ∈ Z∗ | ηi ≥ 0 (i = 1, 2, . . .)}, and X0(x0) = R+. The point x0 is a radial
w-minimizer of (1), since it is the only feasible point. Obviously f ′(x0, 1) = −1 ∈ −int C ,
g′(x0, 1) = e ∈ Z = −int K [w0], whence condition (2) does not hold.

The inclusion

( f, g)
[1 ]
− (x0, u) ⊂ f [1 ]

− (x0, u) × g[1 ]
− (x0, u) (3)

has place (where the derivative ( f, g)
[1 ]
− (x0, u) is understood as in Theorem 5.1), but usually

for nonsmooth functions these sets are different. So, in general condition (2) in the thesis of
Theorem 5.1 cannot be replaced by

f [1 ]
− (x0, u) × g[1 ]

− (x0, u) ∩
(
−int ( C × K [−g(x0)] )

)
= ∅. (4)

This is illustrated by the following example.

Example 5.2 Consider problem (1) with X = R, X0 = R+, Y = R, C = R+, Z = R,
K = R+, f : X0 → Y defined by

f (x) =
{

x sin(1/x) , x > 0 ,

0 , x = 0 ,

and g : X0 → Z defined by g(x) = − f (x). Let x0 = 0. Then f (x0) = 0 and x0 is a
w-minimizer of problem (1). We have g(x0) = 0 and K [−g(x0)] = K . Condition (2) is
satisfied, since (ȳ0, z̄0) ∈ ( f, g)

[1 ]
− (x0, u), u ∈ X0(x0), implies z̄0 = −ȳ0, whence

(ȳ0, z̄0) = (ȳ0,−ȳ0) /∈ [−∞, 0) × [−∞, 0) = −int
(

C × K [−g(x0)]
)

.

At the same time condition (4) does not hold, since f [1 ]
− (x0, 1) = g[1 ]

− (x0, 1) = [−1, 1] .

When f [1 ]
− (x0, u) or g[1 ]

− (x0, u) is a singleton, then inclusion (3) turns into an equality.
Consequently, if this holds for all u ∈ X0(x0) Theorem 5.1 is true with condition (4) instead
of (2). Example 5.2 shows that in general this does not hold. In Sects. 7 and 8 the satisfaction
of condition (4) allows in the considered there particular problems to substitute the Dini set
valued derivative with the more simple single valued lower Dini derivative. Hence the imple-
mentation of (4) instead of (2) is more relevant with regard of the aim of the investigation.
Actually, dealing with problems with quasiconvex constraints, we get optimality conditions
involving (4), and this is the reason why we occupy here with problems with such constraints.
The next Theorem 5.3 illustrates this idea.
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Theorem 5.2 Consider problem (1). Let x0 be a radial w-minimizer of (1) and suppose that
for all u ∈ X0(x0) the following constraint qualification of Kuhn-Tucker type holds:

Q(x0, u) :
{

If g(x0 + t0u) ∈ −int K [−g(x0)] for some t0 > 0
then there exists t̄ > 0 such that g(x0 + t̄u) ∈ −K .

Let the function g be K -quasiconvex. Then for each u ∈ X0(x0) condition (4) holds.

Proof Suppose on the contrary, that for some u0 ∈ X0(x0) there exist ȳ0 ∈ f [1 ]
− (x0, u0) and

z̄0 ∈ g[1 ]
− (x0, u0) such that ȳ0 ∈ −int C and z̄0 ∈ −int K [−z0]. Let ȳ0 = limk(1/sk)(yk −

y0) and z̄0 = limk(1/tk)(zk − z0) for some sequences sk → 0+ and tk → 0+, where yk =
f (x0+sku0), y0 = f (x0), zk = g(x0+tku0), z0 = g(x0). Then there exists a positive integer
k0 such that (1/tk0)(z

k0 −z0) ∈ −int K [−g(x0)] (the bars in −int K [−g(x0)] can be dropped
because (1/tk0)(z

k0 − z0) is finite), whence g(x0 + tk0 u0) = zk0 ∈ z0 − int K [−g(x0)] ⊂
−K − int K [−g(x0)] ⊂ −K [−g(x0)]− int K [−g(x0)] ⊂ −int K [−g(x0)] . The constraint
qualification Q(x0, u0) gives that there exists t̄ > 0 such that g(x0 + t̄u0) ∈ −K . Since also
g(x0) = z0 ∈ −K and g is K -quasiconvex, we have g(x0 + tu0) ∈ −K for all t ∈ [0, t̄].
Choose the positive integer k̄ such that sk < t̄ for all k ≥ k̄. The points x0 + sku0, k ≥ k̄,
are feasible and (1/sk)(yk − y0) ∈ −int C (the bars in −int C can be dropped because
(1/sk)(yk − y0) are finite), whence f (x0 + sku0) ∈ f (x0) − int C . This contradicts the
hypothesis that x0 is a radial w-minimizer. ��
Remark 5.1 From the hypothesis that g is K -quasiconvex, that is that the sets g−1(z − K ) =
{x ∈ X0 | g(x) ∈ z − K }, for all z ∈ Z , are convex, we have used the convexity only
when z = 0, that is the convexity of the set g−1(−K ). Even more, we have used only that
g−1(0) is star-shaped with respect to x0. The latter means that for all x ∈ g−1(−K ) the
segment [x0, x] is contained in g−1(−K ). Therefore, in Theorem 5.2 the hypothesis “g is
K -quasiconvex” can be replaced by the weaker one “g−1(−K ) is star-shaped with respect
to x0”.

The next theorem establishes necessary optimality conditions with no constraint qualifi-
cations involved. It uses the less restrictive quasiconvexity hypothesis that g is K [−g(x0)]-
quasiconvex instead of K -quasiconvex. The price we pay is the more restrictive hypothesis
that the cone K ′ is polyhedral. It remains an open question whether this theorem remains true
when the hypothesis “K ′ is polyhedral” is substituted by the weaker one “K ′ has a compact
base”. In the case when Y is a normed space if f [1 ]

− (x0, u) or g[1 ]
− (x0, u) is a singleton for

all u ∈ X0(x0), and “g is radially continuous at x0”, the positive answer is given by Theorem
5.1, since now ( f, g)

[1 ]
− (x0, u) = f [1 ]

− (x0, u) × g[1 ]
− (x0, u). Let us still underline that for us

the case of K ′ polyhedral is of special interest, since the positive orthant cones used in the
considered particular problems in Sects. 7 and 8 are of this type.

Theorem 5.3 Let Z be a locally convex space and let the cone K ′ be polyhedral. Consider
problem (1). Let x0 be a radial w-minimizer of (1). Let g be K [−g(x0)]-quasiconvex at
x0, and let the functions 〈η, g〉 be radially continuous at x0 for all η ∈ extd K ′ such that
〈η, g(x0)〉 �= 0. Then for each u ∈ X0(x0) condition (4) is satisfied.

Proof Suppose on the contrary, that for some u0 ∈ X there exists ȳ0 ∈ f [1 ]
− (x0, u0),

z̄0 ∈ g[1 ]
− (x0, u0) such that ȳ0 ∈ −int C , z̄0 ∈ −int K [−z0]. Let ȳ0 = limk(1/sk)(yk − y0)

and z̄0 = limk(1/tk)(zk − z0) for some sequences sk → 0+ and tk → 0+, where yk =
f (x0 + sku0), y0 = f (x0), zk = g(x0 + tku0), z0 = g(x0). Since the cone K ′ is polyhe-
dral, it possesses a compact base of the type � = co {η1, . . . , ηq}. We claim that for each
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ηi (i = 1, . . . q) there exists ki such that 〈ηi , g(x0 + tu0)〉 ≤ 0 for 0 ≤ t ≤ tki . When
〈ηi , g(x0)〉 = 0 it is enough to take ki such that (1/tki )(z

ki − z0) ∈ −int K [−g(x0)]. Then
〈ηi , zki 〉 ≤ 0 and the K [−g(x0)]-quasiconvexity at x0 of g gives

〈ηi , g(x0 + tu0)〉 ≤ max
(
〈ηi , g(x0)〉, 〈ηi , g(x0 + tku0)〉

)
≤ 0 .

When 〈ηi , g(x0)〉 < 0 our claim follows from the radial continuity of 〈ηi , g〉. Put k0 =
max{k1, . . . , kq}. We have proved that all the points x0 + tu0, 0 ≤ t ≤ tk0 , are feasi-
ble. Therefore the points x0 + sku0 are feasible for all sufficiently large k. Now we get
yk ∈ y0 − int C , a contradiction to the hypothesis that x0 is a radial w-minimizer of (1). ��
Remark 5.2 Using the notation from the proof, introduce the set of the active indexes J (x0) =
{ j | 〈η j , g(x0)〉 = 0}. The K [−g(x0)]-quasiconvexity at x0 of g according to Theorems 4.1
and 4.5 is equivalent to the joint quasiconvexity at x0 of the functions 〈η j , g(x)〉, j ∈ J (x0).
The radial continuity at x0 is assumed only for the functions 〈η j , g(x)〉, j /∈ J (x0).

Condition (4) can be referred as optimality condition in primal form. The next theorem
establishes that in important cases it is equivalent to condition (5), which can be referred as
optimality condition in dual form. Similarly, replacing in the first row of (5) f [1 ]

− (x0, u) ×
g[1 ]
− (x0, u) with ( f, g)

[1 ]
− (x0, u) we get the equivalent dual condition of (the primal) condi-

tion (2). The second row in (5) can be written in the form ∃ (ξ0, η0) ∈ C ′ × K ′[−g(x0)]. We
prefer a record exposing the slackness condition 〈η0, g(x0)〉 = 0. The sum 〈ξ0, ȳ〉 + 〈η0, z̄〉
has always sense, for neither of its addends takes value −∞.

Theorem 5.4 When Y and Z are locally convex spaces, and C and K have nonempty inte-
riors, (or when Y and Z are finite dimensional) condition (4) is equivalent to:

∀ (ȳ, z̄) ∈ f [1 ]
− (x0, u) × g[1 ]

− (x0, u) :
∃ (ξ0, η0) ∈ C ′ × K ′ : 〈η0, g(x0)〉 = 0,

(ξ0, η0) �= (0, 0), 〈ξ0, ȳ〉 �= −∞, 〈η0, z̄〉 �= −∞,

and 〈ξ0, ȳ〉 + 〈η0, z̄〉 ≥ 0 .

(5)

Proof Let (ȳ, z̄) ∈ f [1 ]
− (x0, u) × f [1 ]

− (x0, u). Take the couple (y0, z0) ∈ Y × Z , such that
y0 = ȳ when ȳ ∈ Y or (y0)∞ = ȳ when ȳ ∈ Y∞, similarly z0 = z̄ when z̄ ∈ Z or (z0)∞ = z̄
when z̄ ∈ Z∞. Obviously, condition (4) is equivalent to (y0, z0) /∈ −(int C ×K [−g(x0)]) for
any possible choice of (ȳ, z̄). Applying the Separation Theorem, we see that this is equivalent
to the existence of (ξ0, η0) ∈ Y ∗ × Z∗, (ξ0, η0) �= (0, 0), such that 〈ξ0, y0〉 + 〈η0, z0〉 ≥ 0
and 〈ξ0, y〉 + 〈η0, z〉 ≤ 0 when (y, z) ∈ −(C × K [−g(x0)]). Moreover, the couple (ξ0, η0)

can be chosen so that 〈ξ0, y0〉 ≥ 0 and 〈η0, z0〉 ≥ 0 (when y0 /∈ −int C we may put η0 = 0,
or when z0 /∈ −int K [−g(x0)] we may put ξ0 = 0). The inequalities 〈ξ0, y〉 + 〈η0, z〉 ≤ 0,
(y, z) ∈ −(C × K [−g(x0)]), with regard that C and K [−g(z0)] are cones, give 〈ξ0, y〉 ≥ 0,
∀ y ∈ C , and 〈η0, z〉 ≥ 0, ∀ z ∈ K [−g(x0)], that is ξ0 ∈ C ′ and η0 ∈ K ′[−g(x0)]. Now
〈ξ0, y0〉 ≥ 0 gives 〈ξ0, ȳ〉 ≥ 0, and 〈η0, z0〉 ≥ 0 gives 〈η0, z̄〉 ≥ 0. Hence 〈ξ0, ȳ〉 �= −∞,
〈η0, z̄〉 �= −∞, and 〈ξ0, ȳ〉 + 〈η0, z̄〉 ≥ 0. ��

6 Sufficient conditions and global w-minimizers

In this section we are interested to distinguish classes of functions, for which condition (4) is
sufficient for the optimality of the reference point x0. The pseudoconvexity plays an impor-
tant role in these considerations. Under pseudoconvexity assumptions the optima turn to be
global w-minimizers.
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Theorem 6.1 Let Z be a locally convex space. Consider problem (1). Let g be strictly
K [−g(x0)]-pseudoconvex at x0 and f be C-pseudoconvex at x0. Suppose that for each
u ∈ X0(x0) condition (4) is satisfied. Then x0 is a global w-minimizer of problem (1). If in
addition f is strictly C-pseudoconvex at x0, then x0 is a strict global w-minimizer.

Proof Assume on the contrary, that x0 is not a global w-minimizer. Then there exists a
feasible point x1 ∈ X0 such that f (x1) − f (x0) ∈ −int C . Since f is C-pseudoconvex at
x0, it holds f [1 ]

− (x0, u) ∩ (−int C) �= ∅ with u = x1 − x0. Therefore condition (4) gives

that g[1 ]
− (x0, u) ∩ −int K [−g(x0)] = ∅. On the other hand g(x1) − g(x0) ∈ −K [−g(x0)].

Indeed, for all η ∈ K ′[−g(x0)] we have

〈η, g(x1) − g(x0)〉 = 〈η, g(x1)〉 ≤ 0

(here we use that K [−g(x0)] coincides with its second positive polar cone, a consequence
of Z locally convex space). Since g is strictly K [−g(x0)]-pseudoconvex at x0, we have
g[1 ]
− (x0, u)∩−int K [−g(x0)] �= ∅, a contradiction. When f is strictly C-pseudoconvex, the

global minimizer x0 is strict. Indeed, on the contrary we would have f (x1) − f (x0) ∈ −C
for some feasible point x1 ∈ X0\{x0}. Put u = x1 − x0. The strict C-pseudoconvexity of
f gives f [1 ]

− (x0, u) ∩ (−int C) �= ∅, and the strict K [−g(x0)]-pseudoconvexity of g gives

g[1 ]
− (x0, u) ∩ −int K [−g(x0)] �= ∅, a contradiction. ��

The following Theorem 6.2 is a direct consequence of Theorem 6.1 because of the relation
between convexity and pseudoconvexity given in Theorem 4.7. Similar statement one finds
in [8]. It can be considered as a variant of the classical result claiming that any Kuhn-Tucker
point in a convex programming problem is a global minimizer. In this sense we recognize that
the obtained here sufficient conditions generalize to vector optimization classical results from
convex programming. We concentrate on quasiconvex constraints following some direction
in mathematical programming. Quasiconvex programming, initiating with the study of scalar
smooth quasiconvex programming problems, has a long history. A parallel between convex
and quasiconvex programming one finds in Luenberger [18]. It is worth mentioning some
similarity of Theorem 6.1 with other classical results concerning scalar nonsmooth problems,
see e. g. Arrow, Enthoven [2,Theorem 3], Bair [3,Proposition 3], Bector et al. [4,Theorem
3.1], Giorgi [15,Theorem 1.4].

Theorem 6.2 Let X, Y and Z be normed spaces, Y and Z finite dimensional, and f and g
Lipschitz near x0. Let g be strictly K [−g(x0)]-convex at x0 and f be C-convex at x0. Sup-
pose that for each u ∈ X0(x0) condition (4) is satisfied. Then x0 is a global w-minimizer of
problem (1). If in addition f is strictly C-convex at x0, then x0 is a strict global w-minimizer.

Theorem 6.1 in comparison with the respective necessary condition (“respective” in the
sense that they both concern the cone K [−g(x0)]) from Theorem 5.3 does not confine to
polyhedral cones K and does not use for g radial continuity conditions at x0. The next theo-
rem deals with K -pseudoconvexity, so it is respective to Theorem 5.2. Observe that now the
hypotheses are similar to these of Theorem 5.3.

Theorem 6.3 Let Z be a locally convex space and let the cone K ′ be polyhedral. Consider
problem (1). Let g be strictly K -pseudoconvex at x0 and f be C-pseudoconvex at x0. Let also
g be K [−g(x0)]-quasiconvex at x0 and 〈η, g〉 be radially continuous at x0 for any η ∈ extd K
such that 〈η, g(x0)〉 �= 0. Suppose that for each u ∈ X0(x0) condition (4) is satisfied. Then
x0 is a global w-minimizer of problem (1). If in addition f is strictly C-pseudoconvex at x0,
then x0 is a strict global w-minimizer.
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Proof Assume on the contrary, that x0 is not a global w-minimizer. Then there exists a fea-
sible point x1 ∈ X0 such that f (x1) − f (x0) ∈ −int C . Since f is C-pseudoconvex at x0,
it holds f [1 ]

− (x0, u) ∩ (−int C) �= ∅ with u = x1 − x0. Therefore condition (4) gives that

g[1 ]
− (x0, u) ∩ −int K [−g(x0)] = ∅. On the other hand g(x0 + tu) − g(x0) ∈ −K for some

t > 0. To show this let � = co {η1, . . . , ηn} be a base of K . When η ∈ K ′[−g(x0)] from
g(x1) ∈ −K we have 〈η, g(x1)−g(x0)〉 = 〈η, g(x1)〉 ≤ 0. The K [−g(x0)]-quasiconvexity
at x0 of g gives now 〈η, g(x0 + tu)〉 ≤ 0 for all t ∈ [0, 1]. When η ∈ K ′\K ′[−g(x0)] the
radial continuity at x0 of 〈η, g〉 with regard to 〈η, g(x0)〉 < 0 gives 〈η, g(x0 + tu)〉 < 0 for
all sufficiently small t . Thus, we can find t such that 〈ηi , g(x0 + tu)〉 ≤ 0 for all i = 1, . . . , n.
Since g is strictly K [−g(x0)]-pseudoconvex at x0, we have g[1 ]

− (x0, u)∩−int K [−g(x0)] �=
∅, a contradiction. When f is strictly C-pseudoconvex, like in Theorem 6.1 we see that the
global minimizer x0 is strict. ��

7 The positive orthant as ordering cone

In this section we reformulate the previous results for problem (1) with finite dimensional
image space Z = R

p (with Euclidean norm), and ordering cone being the positive orthant
K = R

p
+ (then K ′ = K has a base the convex hull of the unit vectors ξ j along the axes). We

write g = (g1, . . . , gp), agreeing that in this and similar notations the lower indexes stand
for the coordinates. We agree also that 0 · {±∞} = 0. For x0 ∈ X0 the set of the active
indexes for problem (1) is defined by J (x0) = { j | g j (x0) = 0}. The main feature of this
section is that we replace the set valued derivatives of g used in the previous sections with
the single valued lower Dini derivatives.

Theorem 7.1 Consider problem (1) with Z = R
p and K = R

p
+ and let x0 be a radial w-min-

imizer. Let the functions g j , j = 1, . . . , p, be radially continuous at x0 when j /∈ J (x0) and
quasiconvex at x0 when j ∈ J (x0) (or less restrictive, g j (x), j ∈ J (x0), jointly quasiconvex
at x0). Then for each u ∈ X0(x0) the following condition is satisfied:

f [1 ]
− (x0, u) × {g′−(x0, u)} ∩

⎛

⎝−int

⎛

⎝ C ×
p∏

j=1

R+[−g j (x0)]
⎞

⎠

⎞

⎠ = ∅ . (6)

Proof We just check that the hypotheses of Theorem 5.3 are satisfied. Theorem 4.5 gives that
g is K [−g(x0)]-quasiconvex at x0. The assumed radial continuity at x0 of g j , j /∈ J (x0),
coincides with the radial continuity at x0 from the hypothesis of Theorem 5.3. Assume that
(6) is not true. Then there are sequences t jk → 0+ ( j = 1, . . . , p) and sk → 0+, such
that ȳ0 = limk(1/sk)( f (x0 + sku) − f (x0)) ∈ −int C and z̄0

j = limk(1/t jk)(g j (x0 +
t jku) − g j (x0)) ∈ −int R+[−g j (x0)] ( j = 1, . . . , p). Take a sequence tk → 0+, such
that tk < min(t1k, . . . , tpk). Passing to a subsequence, due to Z finite dimensional, we may
assume that limk(1/tk)(g(x0 + tku) − g(x0)) = ẑ0. The quasiconvexity assumption for g j ,
j ∈ J (x0), gives ẑ0

j ≤ z̄0
j for j ∈ J (x0). This implies that (ȳ0, ẑ0) belongs to the left-hand

side set in (4), a contradiction with the thesis of Theorem 5.3. ��
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Remark 7.1 The primal form condition (6) admits an equivalent dual form representation
(the equivalency is proved like in Theorem 5.4):

∀ ȳ ∈ f [1 ]
− (x0, u) :

∃ (ξ0, η0) ∈ C ′ × R
p
+ : η0

j g j (x0) = 0 ( j = 1, . . . , p),

(ξ0, η0) �= (0, 0), 〈ξ0, ȳ〉 �= −∞,

η0
j = 0 if g j

′
−(x0, u) = −∞ ( j = 1, . . . , p),

and 〈ξ0, ȳ〉 + ∑p
j=1 η0

j g j
′
−(x0, u) ≥ 0 .

Turn attention that in the sum in the last row we have η0
j g j

′
−(x0, u) = 0 when g j

′
−(x0, u) =

−∞. So, the sum does not contain addends −∞, hence it has always sense.

The following theorem gives sufficient conditions and is a straightforward corollary of
Theorems 6.1 and 4.6.

Theorem 7.2 Consider problem (1) with Z = R
p and K = R

p
+. Let the functions g j ,

j ∈ J (x0), be jointly strictly pseudoconvex at x0, and f be C-pseudoconvex (strictly C-
pseudoconvex) at x0. Suppose also that when (g j )

′−(x0, u) < 0 holds for all j ∈ J (x0), then
there is a sequence tk → 0+ such that the following limits exist and satisfy the given inequal-
ities limk

1
tk

(
g j (x0 + tku) − g j (x0)

)
< 0. Suppose that for each u ∈ X0(x0) condition (6)

is satisfied. Then x0 is a global w-minimizer (strict global w-minimizer).

Remark 7.2 When Y = R
m and C = R

m+ also the set valued derivative f [1 ]
− (x0, u) used in

Theorems 7.1 and 7.2 can be replaced by the single valued lower Dini derivative. Actually
the primal condition (6) becomes now

( f ′−(x0, u), g′−(x0, u)) /∈ −int

⎛

⎝ R
m
+ ×

p∏

j=1

R+[−g j (x0)]
⎞

⎠

and the equivalent dual condition

∃ (ξ0, η0) ∈ R
m+ × R

p
+ : η0

j g j (x0) = 0 ( j = 1, . . . , p),

(ξ0, η0) �= (0, 0), ξ0
i = 0 if fi

′−(x0, u) = −∞ (i = 1, . . . , m),

η0
j = 0 if g j

′
−(x0, u) = −∞ ( j = 1, . . . , p),

and
∑m

i=1 ξ0
i fi

′−(x0, u) + ∑p
j=1 η0

j g j
′
−(x0, u) ≥ 0 .

8 The scalar problem

In this section we consider the scalar constrained optimization problem

min f (x), g j (x) ≤ 0 ( j = 1, . . . , p) , (7)

where f : X0 → R, g j : X0 → R ( j = 1, . . . , p). Putting g = (g1, . . . , gp) and agreeing
to write g(x) ≤ 0 when the coordinate functions satisfy the same inequality, we can write
(7) in the form

min f (x), g(x) ≤ 0 . (8)

Problem (7) is in fact a particular vector problem (1) with Y = R, C = R+, Z = R
p and

K = R
p
+. The ordering cones are the positive orthants. Therefore to this problem we can
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apply the results from the previous section. Here we do it explicitly in the following Theo-
rems 8.1 and 8.2. We repeat in some sense the results from the previous section, because of
the importance of the scalar problems in optimization theory. Another aim of this section is
to give some examples supporting the theory. Establishing necessary and sufficient condi-
tions, we imposed some hypotheses on the involved functions. One may ask in how far these
hypotheses are essential. The answer to some of theses questions is given by examples of
scalar problems. Here we insert several such examples.

We formulate our results applying the following condition in primal form:

( f ′−(x0, u), g′−(x0, u)) /∈ −int

⎛

⎝ R+ ×
p∏

j=1

R+[−g j (x0)]
⎞

⎠ . (9)

Condition (9) admits replacement with the equivalent dual form condition:

∃ (ξ0, η0) ∈ R+ × R
p
+ : η0

j g j (x0) = 0 ( j = 1, . . . , p),

(ξ0, η0) �= (0, 0), ξ0 = 0 if f ′−(x0, u) = −∞,

η0
j = 0 if g j

′
−(x0, u) = −∞ ( j = 1, . . . , p),

and ξ0 f ′−(x0, u) + ∑p
j=1 η0

j g j
′
−(x0, u) ≥ 0 .

(10)

Theorem 8.1 Consider problem (7) and let x0 be a radial minimizer. Let the functions g j ,
j = 1, . . . , p, be radially continuous at x0 when j /∈ J (x0) and quasiconvex at x0 when
j ∈ J (x0) (or less restrictive, g j (x), j ∈ J (x0), jointly quasiconvex at x0). Then for each
u ∈ X0(x0) condition (9) is satisfied.

Theorem 8.2 Consider problem (7). Let the functions g j , j ∈ J (x0), be jointly strictly
pseudoconvex at x0, and f be pseudoconvex (strictly pseudoconvex) at x0. Suppose also that
when (g j )

′−(x0, u) < 0 holds for all j ∈ J (x0), then there is a sequence tk → 0+ such that the
following limits exist and satisfy the given inequalities limk

1
tk

(
g j (x0 + tku) − g j (x0)

)
< 0.

Suppose that for each u ∈ X0(x0) condition (9) is satisfied. Then x0 is a global minimizer
(strict global minimizer).

The next examples clarifies that the hypothesis for the radial continuity of g is essential
in Theorem 8.1 (and hence in Theorem 5.3).

Example 8.1 Consider problem (8) with f, g : R → R given by f (x) = −x and

g(x) =
{−1 , x ≤ 0 ,

1 , x > 0 .

The function g is quasiconvex and lower semicontinuous, but not (radially) continuous.
The point x0 = 0 is a radial (and global) minimizer. The Dini derivatives for u = 1 are
f ′−(x0, u) = −1 and g′−(x0, u) = +∞. Condition (9) is not satisfied, since

( f ′−(x0, u), g′−(x0, u)) = (−1, +∞) ∈ −int (R+ × R) = −int (R+ × R+[−g(x0)]) .

In connection with this example we do the following comment. The lower semicontinuity
is in general a natural property in connection with minimization problems. The given example
shows however that if we substitute the radial continuity hypothesis with lower semiconti-
nuity hypothesis, we need add also some additional assumption in the necessary optimality
conditions. We think this can be done on some abstract level (here we do not occupy with
this problem). Concerning an eventual development in this direction, recall that a general
approach to semi-continuous maps in cone-ordered spaces one finds in Penot, Théra [20].
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The following example shows that the strict pseudoconvexity if g in Theorem 8.2 (and
hence in Theorem 6.1) cannot be relaxed to only pseudoconvexity (or quasiconvexity).

Example 8.2 Consider problem (8) with f, g : R → R given by f (x) = −x and g(x) = 0.
Put x0 = 0. The functions f and g are pseudoconvex (and quasiconvex), but g is not strictly
pseudoconvex. The point x0 is not a global minimizer, while condition (9) is satisfied, since

( f ′−(x0, u), g′−(x0, u)) = (−u, 0) /∈ −int (R+ × R+) = −int (R+ × R+[−g(x0)]) .

The following example shows that the pseudoconvexity requirement for f in Theorem
8.2 (and hence in Theorem 6.1) cannot be replaced by quasiconvexity.

Example 8.3 Consider problem (8) with f, g : R → R given by f (x) = x3 and g(x) = x .
Put x0 = 0. The functions f and g are strictly quasiconvex, g is pseudoconvex at x0

but f is not so. Since f ′−(x0, u) = 0 and g′−(x0, u) = u, condition (9) is satisfied (now
f ′−(x0, u) /∈ −int R+). However x0 is not a global minimizer.

The conditions in dual form involve the pair (ξ0, η0) whose components can be referred as
Lagrange multipliers. We see that in the considered here dual form conditions the multipliers
depend on the direction. In contrary, classical optimization theory deals with directionally
independent multipliers. The next example shows that the directional dependence of the
multipliers for problems with continuous quasiconvex data cannot be avoided.

Example 8.4 Consider problem (8) with f, g : R → R given by

f (x) =
{

x , x ≥ 0 ,

2x , x < 0 ,
g(x) =

{−2x , x ≥ 0 ,

−x , x < 0 .

The functions f and g are continuous and strictly pseudoconvex (hence strictly quasicon-
vex). The set of the feasible points is R+. Put x0 = 0. Obviously x0 is a global minimizer.
Condition (10) is satisfied in virtue of Theorem 8.1 (and Theorem 5.3), but a similar condition
with directionally independent multipliers does not hold.

Indeed, assume in the contrary, that condition (10) is satisfied with some directionally
independent multipliers (ξ0, η0). For u ≥ 0 it holds f ′−(x0, u) = u, g′−(x0, u) = −2u,
whence in particular we should have

ξ0 f ′−(x0, 1) + η0 g′−(x0, 1) = ξ0 − 2η0 ≥ 0 .

Similarly, for u ≤ 0 it holds f ′−(x0, u) = 2u, g′−(x0, u) = −u, whence in particular we
should have

ξ0 f ′−(x0, −1) + η0 g′−(x0, −1) = −2ξ0 + η0 ≥ 0 .

Adding the two inequalities we obtain −(ξ0 + η0) ≥ 0, which obviously contradicts to
ξ0 ≥ 0, η0 ≥ 0, (ξ0, η0) �= (0, 0).

Acknowledgements The author is grateful to the two anonymous referees for their valuable comments and
remarks.
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